

Delivery of CIP Over RA Serial DF1 Links

(Rev. 1.1, 12-Oct-06)

Copyright©2006 Rockwell Automation

Delivery of CIP Over RA Serial DF1 Links

Delivery of CIP Over RA Serial DF1 Links

Purpose

This document describes the use of PCCC commands 0Ah and 0Bh to support CIP connected and
unconnected explicit messaging over a Serial DF1 link (e.g RS-232 or RS-485). It also describes
the PCCC Fragmentation protocol used to transfer messages larger than the PCCC 244 byte limit.

Note: “CIP” refers to the “Common Industrial Protocol” shared between ControlNet,
DeviceNet, and EtherNet/IP, and is documented in the "CIP Standard" (CIP Networks Library
(Volume 1: Common Industrial Protocol). Also, the term "IOI" and "EPATH" are
interchangeable.

Note: “PCCC” refers to the “Programmable Controller Communication Commands” as
described in the "DF1 Protocol and Command Set Manual”, publication 1770-6.5.16, and the
“Logix Data Access Reference Manual”, publication 1756-RM005A-EN-E. Both are available
for download from the www.ab.com website. When Rockwell Automation (RA) defined its DF1
serial protocol, it was limited to the PCCC application protocol. Therefore, when RA developed
the CIP application protocol, it encapsulated this in PCCC.

Appendices

Appendix A: Summary of PCCC Commands 0Ah and OBh (page 14)
Appendix B: Fragmentation Protocol (page 17)

CIP Communication Architecture

The Open System Interconnect (OSI) reference model from the International Standards
Organization (ISO) is used to help structure this document. The table below shows how the
layers from the model are discussed in this document.

Table 1 Open System Interconnect (OSI) Layers

This OSI layer: with this OSI name: is discussed under: Function

7 Application

6 Presentation

Messaging

Message format and meaning

5 Session not used in CIP

4 Transport Transport End to end data integrity

3 Network Routing Determining the path from originator to destination

2 Data Link not discussed Rules for accessing a single link

1 Physical not discussed Rules for encoding bits on the media

RA Technologies Copyright©2006 Rockwell Automation page 2 of 52

http://www.ab.com/

Delivery of CIP Over RA Serial DF1 Links

The CIP networks share a common understanding of the layers above the Data Link Layer.

Messaging

RA Logix products have two application layer (messaging) protocols. These are:

• CIP Connected Messages (refer to “Messaging”). This is the preferred messaging
system for CIP products.

• PCCC. This protocol eases Logix connection to RA legacy networks (DH, DH+,
Serial DF1 and DH-485) and continues as a Logix Serial DF1interface standard. The
CIP extensions to PCCC are specific to Rockwell Automation and are not part of the
“open” CIP Standard.

These are both request/response protocols, with exactly one response expected for each request.

Transport

CIP defines a set of transport protocol classes. Each of these classes defines a header for the
PDU and appropriate state machines. Each class provides a different capability. The application
chooses which class to use for that application. Refer to CIP Standard for standard transport
protocols.

Routing

CIP generally uses connections for moving data and messages, although unconnected messages
are also supported. Connected messages use a Connection ID (implicit address) and unconnected
messages use an IOI (Internal Object Identifier, or EPATH) to explicitly identify the route and
target object. These connections are opened by one end–point of the connection. The connection
originator specifies the route the connection must take. These connections can be:

• point–to–point or multicast;

• unidirectional or bi-directional.

Interface modules, which connect to non-CIP networks, must know how to route messages from
other network types. This information is presented in a “routing table”. The ControlLogix
chassis holds communication interfaces to each network type. Each communication module is a
“half–gateway” which translates between the native network and the ControlLogix backplane
protocol. This allows each communication module to have a small number of translations rather
than trying to support n translations, one for each other network type.

RA Technologies Copyright©2006 Rockwell Automation page 3 of 52

Delivery of CIP Over RA Serial DF1 Links

Delivery of CIP in PCCC

The delivery of CIP messages across existing PCCC-based link types encapsulates CIP
information inside of PCCC messages. The PCCC messaging system is used to provide two
different components of the CIP communication structure:

• UCMM – The CIP UnConnected Messaging Manager

• Network Connection Pair

Connected messages have the advantage of reserving a "channel" (some buffer space) for
communications, where delivery of unconnected messages may depend more on the network
traffic to that node.

These are illustrated in the following diagram.

Figure 1 CIP within PCCC

Client App Client UCMM w/
Frag Sender

Server UCMM w/
Frag Receiver Server MR

PCCC Request

PCCC Response

CIP Request

CIP
Response

Send

Response

UCMM on PCCC

Connections On PCCC

Originator
PCCC

Sending
Bridge

PCCC
Receiving

Bridge
Target

PCCC
Request

PCCC
Response

To
Target

From
Target

To
Target

From
Target

CIP
Connection

To
Target

From
Target

CIP
Connection

To
Target

From
Target

RA Technologies Copyright©2006 Rockwell Automation page 4 of 52

Delivery of CIP Over RA Serial DF1 Links

PCCC as an UnConnected Messaging Manager (UCMM)

PCCC Command Code 0Bhex provides CIP UCMM behavior. The CIP Standard defines the CIP
UCMM. The UCMM is directly attached to the Message Router. Therefore, the contents of this
PCCC message is a CIP Service request. The CIP Service response is returned via the UCMM,
which is the PCCC response. Uses of the embedded CIP would be

a) Unconnected native communication to a CIP device (e.g. read/write ControlLogix Data Table
Tags)

b) Make a connection request to a CIP device (for connected communication)
c) deliver an embedded PCCC command (e.g. Type R/W of "mapped" data in ControlLogix); in

this case a PCCC command contains a CIP command which in turn contains another PCCC
command.

The following table defines the fields for this PCCC message:

Table 2 PCCC Command 0B Structure

Name Type Description of Request Parameter Semantics of Values

CMD USINT Command = 0Bhex

STS USINT Status (0 in request)

TNSW UINT Used to match response with
request

FNC USINT Fragmentation protocol function * Fragmentation Protocol

Extra USINT Additional information for
fragmentation protocol

* Fragmentation Protocol

Service* USINT CIP Service Code Refer to CIP Standard

Size of IOI*
(EPATH)

USINT Number of UINT’s in IOI Refer to CIP Standard

IOI* (EPATH) Array of UINT Internal Object Identifier or Path Refer to CIP Standard

Parameters Object and
Service
specific

Parameters for this service for this
object

Refer to CIP Standard

* These only appear in the First_Req., First_Response and Only messages.of Fragmentation Protocol

The size of the message, from the FNC to the Parameters, inclusive, is limited by the PCCC
specification and must be less than or equal to 244 bytes. This is enforced by the UCMM
implementation. If an application tries to send a message over the UCMM larger than 244 bytes,
an error is returned to the local application.

RA Technologies Copyright©2006 Rockwell Automation page 5 of 52

Delivery of CIP Over RA Serial DF1 Links

The UCMM requires definition of the following items:

• Retry Time

• Transaction ID

• Request/Response

• Datagram/ReqRsp

• Priority

These are specified in the PCCC implementation as follows:

• Retry Time – This is provided by the PCCC delivery subsystem.

• Transaction ID – This is provided by the PCCC TNSW.

• Request/Response – This is provided by bit 6 of the CMD field of the PCCC
message.

• Datagram/ReqRsp – This is not provided by this PCCC implementation. This
UCMM always provides Request/Response messaging.

• Priority – This is provided by bit 5 of the CMD field of the PCCC message.

See ”Formal model”, unconnected sender and unconnected receiver, for the formal specification
of the fragmentation protocol provided for CMD 0Bhex.

RA Technologies Copyright©2006 Rockwell Automation page 6 of 52

Delivery of CIP Over RA Serial DF1 Links

PCCC as Network Connection Pair

PCCC Command Code 0Ahex provides CIP Network Connection behavior. See “Network
Connections” for the definition of CIP Network Connections. A CIP Network Connection
provides data movement in one direction across a link. Connection would be established by
sending the 0B command first. In many cases, a pair of Network Connections is opened via the
Connection Manager with one OPEN request. The PCCC request and response provides this pair
of Network Connections. The following table shows the fields used:

Table 3 PCCC Command 0A Structure

Name Type Description of Request Parameter Semantics of Values

CMD USINT Command = 0Ahex See DF1 publication

STS USINT Status (0 in request) See DF1 publication

TNSW UINT Transaction sequence number See DF1 publication

FNC USINT Fragmentation protocol function * Fragmentation Protocol

Extra USINT Additional information for
fragmentation protocol

* Fragmentation Protocol

CID* UINT Connection ID Refer to CIP Standard

Trans.
Header*

Transport
Class Specific

Transport Header Refer to CIP Standard

Data ARRAY of
USINT

Data transferred via this connection Refer to CIP Standard

*These only appear in the First_req., First_response, and Only messages

This Connection ID may have a different value than the Connection ID of a different segment
along the path taken by the connection. The Connection ID is the same for all messages over this
CIP Network Connection. The contents of the data field are defined by the object, which is the
target of the connection.

The target application of this protocol is to support Transport Class 3 connections to the CIP
Message router. It is improbable that the defined protocol will work for other transport classes,
since PCCC has a strict single request to single response mapping. Therefore, those transport
classes that do not have exactly one response for each request cannot be supported. The PCCC
“Request” will be used to deliver data from the Client side to the Server side of the connection,
and the PCCC “Response” will be used to deliver data from the Server side to the Client side of
the connection.

RA Technologies Copyright©2006 Rockwell Automation page 7 of 52

Delivery of CIP Over RA Serial DF1 Links

The PCCC status in the PCCC response indicates the success or failure of the PCCC system to
deliver the data across the PCCC link. It does not indicate the success or failure of the CIP
service that might have been requested. The data field will contain the CIP service status.

The following three diagrams review how CIP connection segments are used and the structure of
Originators and Targets.

Keeping a Connection Alive

"Keep-alive" messages are sent over a connection to keep it from timing out during idle periods.
If an originator has sporadic use of a connection, it should send "keep-alive" messages if it wants
the connection to stay alive during the time when it does want to use it. Normally this involves
re-sending the last message sent with the same sequence count. This is a "less expensive" use of
CPU cycles, since the target will not reprocess the whole message; it just resends the same
response already sent (it looks to the responder like a retry due to a lost response). The
connection timeout should be short enough that recovery from noise or a temporary disconnect is
relatively quick. It is better to scale the timeout to something reasonable for noise recovery (20
seconds?) and then use keep-alive messages.

Figure 2 How CIP connection segments are used.

Link Producer

Link ProducerBridging Logic

Bridging Logic

To Target

From Target
Link Consumer

LinkConsumer
To Target

From Target

CIP Connection

RA Technologies Copyright©2006 Rockwell Automation page 8 of 52

Delivery of CIP Over RA Serial DF1 Links

Figure 3 Structure of Originator

Link

Client

To Target

From Target

New Data
Received

SendTrigger

New Data

Link

Originator

Client

 Figure 4 Structure of Target

Server Transport

Link Consumer
To Target

From Target

New Data

Received

Send

New Data

Trigger

Target

Link Producer

Server Application

The next two diagrams show the structure of a CIP Bridge that has a PCCC link attached to it. In
particular note where the fragmentation state machines fit the structure of a bridge; they are
between the CIP ”link” components (Producer and Consumer) and the PCCC link. This allows
the bridge logic to follow the normal CIP behavior, and localizes the impact of the PCCC link
specifics to the link components.

RA Technologies Copyright©2006 Rockwell Automation page 9 of 52

Delivery of CIP Over RA Serial DF1 Links

Figure 5 Structure of CIP Sending Bridge with a PCCC link attached

Link Producer

Bridging Logic

Bridging Logic

Send

New Data

Received

PCCC
Request

PCCC
Response

PCCC Sending

To Target

From Target

Link Consumer

Note: in an "originator", this would be replaced

with "Client Transport"

Link Consumer

Fragmentation
Sender

Link Producer

Figure 6 Structure of CIP Receiving Bridge with a PCCC link attached.

Link ProducerBridging Logic

Bridging Logic

New Data
Received

Send

PCCC
Request

PCCC
Response

To Target

From TargetLink Consumer

PCCC Receiving

Note: in a "target", this would be replaced
"Server Transport"

Link Consumer

Fragmentation
Receiver

Link Producer

RA Technologies Copyright©2006 Rockwell Automation page 10 of 52

Delivery of CIP Over RA Serial DF1 Links

The following is an example of the fields for a CIP Messaging connection using a Class 3
Transport encapsulated in PCCC using Serial DF1 Full Duplex:

Table 4 Example of CIP in PCCC on DF 1

Name Type Description of Request Parameter Semantics of Values

DLE USINT ASCII escape character See DF1 Publication

STX USINT ”Start of message” See DF1 Publication

DST USINT Address of destination See DF1 Publication

SRC USINT Address of source See DF1 Publication

CMD USINT Command = 0Ahex
(CIP Connected message)

See DF1 Publication

STS USINT Status (0 in request) See DF1 Publication

TNSW UINT Transaction sequence number See DF1 Publication

FNC USINT Fragmentation protocol function Fragmentation Protocol

Extra USINT Additional information for fragmentation
protocol

Fragmentation Protocol

CID UINT Connection ID for delivering CIP
Responses

See CIP Standard

Trans. Header UINT Class 3 Transport Header: 16 bit Sequence
Count

See CIP Standard

Service USINT CIPService Code See CIP Standard

Size of IOI
(EPATH)

USINT Number of USINT’s in IOI See CIP Standard

IOI (EPATH) Array of
USINT

Internal Object Identifier or Path See CIP Standard

Parameters Object and
Service
specific

Parameters for this service for this object See CIP Standard

DLE USINT ASCII escape character See DF1 Publication

ETX USINT “End of message” See DF1 Publication

BCC or CRC USINT or
UINT

Block Check Character or
Cyclic Redundancy Check

See DF1 Publication

RA Technologies Copyright©2006 Rockwell Automation page 11 of 52

Delivery of CIP Over RA Serial DF1 Links

Delivery of PCCC in CIP

It’s also possible for the PCCC messaging protocol to be delivered across the CIP system by
establishing a connection to the Message Router object and using an IOI to specify the PCCC
object (67h). The PCCC command is processed by the "Execute PCCC" (4Bh) service.

Table 5 PCCC Object Services

Size Function

Variable (typically 8 or 9 bytes) Requestor Identification

4 to 248 bytes PCCC command (starting with CMD byte)

The following table shows the structure of the Requestor Identification for the Execute PCCC
service:

Table 6 Requestor ID for Execute PCCC Service

Name Type Description of Request Parameter Semantics of Values

Length USINT Length of Requestor Identification In USINT’s, includes Length,
Vendor, Ser. No., and Other

Vendor UINT Vendor number of requestor See CIP Standard

Serial Number UDINT CIP Serial number of requestor See CIP Standard

Other ARRAY of USINT Identifier of user, task, etc. on the
requestor

Requestor specific, typically 2
USINT’s

RA Technologies Copyright©2006 Rockwell Automation page 12 of 52

Delivery of CIP Over RA Serial DF1 Links

Example: Execute_PCCC service over CIP Class 3 Transport

Following is an example of the bytes for the Execute_PCCC service request over (within) a CIP
Class 3 transport. It does not include the link layer bytes, since they vary from one link type to
another.

Table 7 Execute PCCC Over Class 3 Transport

Name Type Description of Request Parameter Semantics of Values

Trans. Header UINT Class 3 Transport Header: 16 bit
Sequence Count

See CIP Standard

Service USINT CIP Service Code for
Execute_PCCC service

4Bh

Size of IOI
(EPATH)

USINT Number of UINT’s in IOI See Identity object specification in
CIP Standard

IOI (EPATH) Array of USINT Internal Object Identifier:
Class = PCCC Object (67h)
Instance = 1

See Identity object specification in
CIP Standard

Length USINT Length of Requestor Identification In USINT’s, includes Length,
Vendor, Ser. No., and Other

Vendor UINT Vendor number of requestor See Identity object specification in
CIP Standard.

Serial Number UDINT CIP Serial number of requestor See Identity object specification, in
CIP Standard

Other ARRAY of USINT Identifier of user, task, etc. on the
requestor

Requestor specific, typically 2
USINT’s

CMD USINT Command code See DF1 publication

STS USINT Status (0 in request) See DF1 publication

TNSW UINT Transaction word See DF1 publication

PCCC Data ARRAY of USINT Parameters for this service See DF1 publication

RA Technologies Copyright©2006 Rockwell Automation page 13 of 52

Delivery of CIP Over RA Serial DF1 Links

Appendix A: Summary of PCCC Commands 0Ah and OBh.

CIP Connected Message (PCCC CMD 0Ah)
• CMD Byte - 0Ah
• Command Parameters -

• Fragmentation Header - Two bytes, Function first, "extra" second
• Connection ID - Two bytes, low byte first
• Transport Header - <size depends on transport class>

For Transport classes 0-3, this is a two byte sequence count, low byte first.

• Data - <variable size>
• Possible Responses -

• STS = 00H - Success, with the following:
• Fragmentation Header - Two bytes, Function first, "extra" second
• Connection ID - Two bytes, low byte first
• Transport Header - <size depends on transport class>

For Transport classes 0-3, this is a two byte sequence count, low byte first.

• Response data - <variable size>
• NOTE: Only STS is supported; there is NOT any EXT STS for this command.

• Operation -

This command is used to provide CIP Network Connection behavior. A CIP Network Connection
provides data movement in one direction across a series of links. In many cases, a pair of Network
Connections are opened via the Connection Manager with one OPEN request. The PCCC request and
response provides this pair of Network Connections.

• Command format diagram

 COMMAND BLOCK RESPONSE BLOCK

------------------------- -------------------------
| Frag Function Code | | Frag Function Code |
------------------------- -------------------------
|"Extra" depends on func| |"Extra" depends on func|
------------------------- -------------------------
| Connection ID (low) | | Connection ID (low) |
------------------------- -------------------------
| Connection ID (high) | | Connection ID (high) |
------------------------- -------------------------
|Transport Header (1st) | |Transport Header (1st) |
------------------------- -------------------------
| : | | : |
------------------------- -------------------------
|Transport Header (last)| |Transport Header (last)|
------------------------- -------------------------
| Connection Data (1st) | | Connection Data (1st) |
------------------------- -------------------------
| : | | : |
------------------------- -------------------------
| Connection Data (last)| | Connection Data (last)|
------------------------- -------------------------

RA Technologies Copyright©2006 Rockwell Automation page 14 of 52

Delivery of CIP Over RA Serial DF1 Links

Example using a class 3 Transport connection to the CIP Message Router.

 COMMAND BLOCK RESPONSE BLOCK
------------------------- -------------------------
| 00 (means "Only") | | 00 (means "Only") |
------------------------- -------------------------
| 00 (Only has no extra)| | 00 (Only has no extra)|
------------------------- -------------------------
| Connection ID (low) | | Connection ID (low) |
------------------------- -------------------------
| Connection ID (high) | | Connection ID (high) |
------------------------- -------------------------
| Trans Seq Count (low) | | Trans Seq Count (low) |
------------------------- -------------------------
| Trans Seq Count (hi) | | Trans Seq Count (hi) |
------------------------- -------------------------
| Service | | Service w/Reply bit |
------------------------- -------------------------
| Size of IOI | | 0 |
------------------------- -------------------------
| IOI (1st Byte) | | CIP Status |
------------------------- -------------------------
| : | | Size of CIP Ext status|
------------------------- -------------------------
| IOI (Last Byte) | | CIP Ext status (1st) |
------------------------- -------------------------
| Parameters (1st byte) | | : |
------------------------- -------------------------
| : | | CIP Ext status (last) |
------------------------- -------------------------
| Parameters (last byte)| | Response Data (1st) |
------------------------- -------------------------
 | : |

 | Response Data (last) |

RA Technologies Copyright©2006 Rockwell Automation page 15 of 52

Delivery of CIP Over RA Serial DF1 Links

CIP Unconnected Message (PCCC CMD 0BH)
• CMD Byte - 0BH
• Command Parameters -

• Fragmentation Header - Two bytes, Function first, "extra" second
• Service - one byte
• Size of IOI - in words, one byte
• IOI - an even number of words; zero words is valid.
• CIP Service Parameters - as defined by the object/service

• Possible Responses -
• STS = 00H - Success, with the following:

• Fragmentation Header - Two bytes, Function first, "extra" second
• Service - one byte, with "response" bit now set
• CIP Status - one byte
• Pad byte - one byte,
• Size of extended status - one byte, in words
• Extended status - "size of extended status" number of words
• CIP response data

• NOTE: Only STS is supported; there is NOT any EXT STS for this command.
• Operation -

This command is used to provide CIP Unconnected Message Manager (UCMM) behavior. (See the
CIP Standard for a definition of the UCMM.) The CIP UCMM is directly attached to the Message
Router Object. Therefore, the content of this PCCC message is a CIP Service request. The CIP Service
response is returned via the UCMM (which is the PCCC response).

• Command format diagram

 COMMAND BLOCK RESPONSE BLOCK

------------------------- -------------------------
| Frag Function Code | | Frag Function Code |
------------------------- -------------------------
|"Extra" depends on func| |"Extra" depends on func|
------------------------- -------------------------
| Service | | Service w/Reply bit |
------------------------- -------------------------
| Size of IOI | | 0 |
------------------------- -------------------------
| IOI (1st Byte) | | CIP Status |
------------------------- -------------------------
| : | | Size of CIP Ext status|
------------------------- -------------------------
| IOI (Last Byte) | | CIP Ext status (1st) |
------------------------- -------------------------
| Parameters (1st byte) | | : |
------------------------- -------------------------
| : | | CIP Ext status (last) |
------------------------- -------------------------
| Parameters (last byte)| | Response Data (1st) |
------------------------- -------------------------
 | : |

 | Response Data (last) |

RA Technologies Copyright©2006 Rockwell Automation page 16 of 52

Delivery of CIP Over RA Serial DF1 Links

Appendix B: Fragmentation Protocol

PCCC has an inherent format of 244 bytes of application data. CIP messages may be up to 510
bytes. Therefore, a fragmentation protocol is used to allow CIP messages to pass transparently
over PCCC based communication channels. This protocol is very similar for the two uses
(connected and unconnected), but there are some subtle differences which result in two sets of
state machines.

See ”Formal model”, connected sender and connected receiver, for the formal specification of the
fragmentation protocol provided for CMD 0Ahex.

Terms

• Sender

This term is used to indicate the partner of the DH+ or DF1 transaction that is
assigning the TNSW.

• Receiver

This term is used to indicate the partner of the DH+ or DF1 transaction that is
returning the TNSW value received.

• Function

A function is used to communicate between the Sender and Receiver the reason
this packet is being sent.

• Handle

A handle is a means of associating multiple PCCC request/response pairs
together into one transaction. It is required that the Receiver use only one
handle value for the whole transaction; this will permit the Sender to Abort a
transaction without having to wait for the receiver's next response.

Overview

This fragmentation protocol uses a function field identifying which fragment of a message is
being transferred will be used. Each fragment is individually acknowledged before the next
fragment is sent. The fragmentation protocol in PCCC also uses a handle. This allows multiple
messages to be fragmented and reassembled in parallel between the devices using PCCC. The
handle is assigned by the Receiver for each fragment. The Sender provides it back to the
Receiver for each fragment.

Application

This protocol is available for PCCC commands 0Ah and 0Bh, which are used for transferring CIP
connected and unconnected messages.

RA Technologies Copyright©2006 Rockwell Automation page 17 of 52

Delivery of CIP Over RA Serial DF1 Links

Functions

The protocol uses two bytes in each direction. The Function is the first byte. The second byte
contains “extra” information, which depends on the value of the Function byte.

The following Functions are defined:

Table 8 Fragmentation Functions

Value Functions sent by Sender Functions sent by Receiver Meaning of “Extra”

00(hex) Only Only 0, unused, ignored

01(hex) First Request Size

02(hex) Middle Middle Handle

03(hex) Last Last Handle

04(hex) First_Response Handle

05(hex) Send_More Handle

06(hex) Abort Handle

07(hex) ACK Handle

08(hex) Nak Reason code

The text below describes the intended use of each function. The word “typically” refers to the
normal expected successful operation. Obviously, in the real world, many error conditions can
occur, including never receiving the “next expected” message. Robust implementations must
account for all conditions. See the State Event Matrices later in this document for the complete
formal specification of how these functions are used.

ONLY Function

This Function is used to send an unfragmented message, whether from the Sender or from the
Receiver. The “extra” byte should be set to zero; it should be ignored by either party when it
receives this Function.

The Receiver will typically respond with an ONLY (if the response is not fragmented) or
FIRST_Resp (if the response is fragmented).

When this is sent from the Receiver to the Sender, it means that the Sender now has the complete
response and can process it.

RA Technologies Copyright©2006 Rockwell Automation page 18 of 52

Delivery of CIP Over RA Serial DF1 Links

FIRST_Req Function

This Function is only sent from the Sender to the Receiver. It is sent with the data for the first
fragment of a fragmented request. That is, it is only used for messages that are two or more
fragments long. The “extra” data specifies the size of the buffer the Receiver should allocate to
hold the complete message. It indicates the number of 256 byte blocks (minus 1) the Receiver
should allocate for the complete application message. That is, application messages of size 0 to
256 bytes will have the “extra” data field set to 0; 257 to 512, to 1; and so on up to 65536 bytes.
This is not the same as the number of fragments that will be sent.

The Receiver will typically respond with an ACK (which contains the handle).

For purposes of calculating the size, the first byte of the Unconnected message is the "Service
code" of the CIP message. The first byte of the Connected message is the first byte of the CID. In
both cases, this is the first byte after the "Extra" byte following the FIRST_Req FNC.

FIRST_Resp Function

This Function is only sent from the Receiver to the Sender. It is sent with the data for the first
fragment of a fragmented response. That is, it is only used for messages that are two or more
fragments long. The “extra” data specifies the handle that will be used for this transaction.

There is no size field. Therefore, the Sender should allocate a maximum size buffer for this
response (or be prepared to dynamically allocate memory as the response fragments are received).

The Sender should issue a SEND_MORE Function with this handle to solicit the next part of the
response. When the Sender receives the LAST Function, it knows that it has all the fragments.

MIDDLE Function

This Function is sent with the data for all fragments except the first and the last. That is, it is only
used for messages that are three or more fragments long. The “extra” data specifies the Handle
that was given to the Sender by the Receiver in the FIRST_Resp (for responses) or in the ACK to
the FIRST_Req (for requests).

While it is permissible for the Receiver to change the value of the handle during the delivery of
the fragments of a request or response, it is highly recommended that it does not do this, because
it makes it more difficult to debug.

The Sender should use the value of the handle it receives in the MIDDLE Function (for
responses) or in the ACK to the MIDDLE Function (for requests) for the next SEND_MORE
function.

When the MIDDLE Function is sent from the Sender to the Receiver, the Receiver should
respond with an ACK (which contains the handle) or a NAK (which contains an error code).

When the MIDDLE Function is sent from the Receiver to the Sender, it is the result of the
SEND_MORE Function from the Sender. The handle to indicate which message the next
fragment is requested for was given to the Receiver with the SEND_MORE.

RA Technologies Copyright©2006 Rockwell Automation page 19 of 52

Delivery of CIP Over RA Serial DF1 Links

LAST Function

This Function is sent with the data for the last fragment. The “extra” data specifies the Handle
that was given to the Sender by the Receiver in the SEND_MORE (for responses) or in the ACK
to the preceding request.

When this is sent from the Sender to the Receiver, the Receiver will typically respond with an
ONLY (if the response is not fragmented) or FIRST_Resp (if the response is fragmented).

When this is sent from the Receiver to the Sender, it means that the Sender now has the complete
response and can process it.

Send More Function

This is only used in the Sender to Receiver direction. It means the Sender is ready to accept
another fragment of a fragmented response. It gives the handle supplied in the preceding
response back to the Receiver to identify the transaction.

Abort Function

This is only used in the Sender to Receiver direction. It means the Sender wishes to discontinue
the transaction specified by the handle. The Receiver should return an ACK to this.

ACK Function

This is only used in the Receiver to Sender direction. It means that the Receiver has accepted the
fragment (delivered in the FIRST_Req or MIDDLE functions) and is ready to receive another
one. It provides the handle to identify the transaction.

NAK Function

This is used to indicate to the Sender that the Receiver is unable to accept the Function sent. An
error code is provided to indicate the reason. The error codes are:

0 - (Not used for errors; reserved to indicate SUCCESS.)

1 - means “Unrecognized Command Value”

2 - means “Sequence Error”, for example a LAST after an ONLY.

3 - means “Not Enough Memory”. As a response to a FIRST_Req or ONLY, indicates the
receiver or server was unable to allocate the needed memory. As a response to a MIDDLE or
LAST, indicates the receiver received more data than was allocated by the FIRST_Req.

4 - means “Unknown Handle”.

5 - means “Unable to support requested memory size”. As a response to a FIRST_Req indicates
the receiver or server does not support the size requested.

6 - means “Connection Busy”.

RA Technologies Copyright©2006 Rockwell Automation page 20 of 52

Delivery of CIP Over RA Serial DF1 Links

Formal Model

This is the formal model used for the specification of the PCCC Fragmentation Protocol. A
compliant implementation acts, when viewed from outside the implementation, as if it has these
exact parts implemented as specified below. However, the real implementation can be structured
as deemed necessary by the implementer.

The formal model used for the specification of the PCCC Fragmentation Protocol has two major
parts: Sender and Receiver. These are modeled with a State Event Matrix (SEM). These have a
lifetime of a CIP message/transaction.

There is a separate sender and receiver definition for the UCMM and the Network Connection
Pair.

RA Technologies Copyright©2006 Rockwell Automation page 21 of 52

Delivery of CIP Over RA Serial DF1 Links

Unconnected Sender

The Sender state machine starts up an instance each time it has a CIP message to send over
PCCC. It uses the TNSW to match a response from the Receiver with this Sender. The following
state transition diagram (STD) is intended to be informative in understanding the SEM; the SEM
is the specification. The STD only shows the “normal” events.

Figure 7 State Transition Diagram - Unconnected Sender

Fragmenting

"Only"
message
sent

Non-existent

Waiting

Assembling

"First_Req"
message sent

"Middle"
message
sent

"Last"
message
sent

"Only"
message
received

"First_Resp"
message
received

"Middle"
message
received

"Last"
message
received

The states for this SM are:

• Non-existent

• Fragmenting

• Waiting

• Assembling

The following events can happen.

• Reset Event

• Timeout Event

This can either be the time specified by the application as part of the "UCMM
request timeout" OR it can be the same network specific hard-coded time value
specified for the Unconnected Receiver.

• CIP Request Arrived Event

RA Technologies Copyright©2006 Rockwell Automation page 22 of 52

Delivery of CIP Over RA Serial DF1 Links

• PCCC Response Arrived Event, FNC= ACK

• PCCC Response Arrived Event, FNC= NAK

• PCCC Response Arrived Event, FNC= Only

• PCCC Response Arrived Event, FNC= First_Resp

• PCCC Response Arrived Event, FNC= Middle

• PCCC Response Arrived Event, FNC= Last

• PCCC Response Arrived Event, FNC= Illegal command

The following internal storage is assumed:

• Buffer Pointer

• Room Left

Table 9 State Event Matrix - Unconnected Sender

State

Event

Non-existent Fragmenting Waiting Assembling

Reset or Timeout Stay in Non-existent Free memory previously allocated. Return a CIP “unable to deliver”
error. Go to Non-existent. See Note.

CIP Request Arrived If the CIP message
fits in one PCCC
message, send the
Only message and go
to Waiting.
Otherwise, initialize
Buffer Pointer and
Room Left, copy
what fits into a
First_Req message,
send it, and go to
Fragmenting

Each CIP message should start up a new state machine. If a CIP
message “associated” with this SM is received, drop it and stay in the
same state.

RA Technologies Copyright©2006 Rockwell Automation page 23 of 52

Delivery of CIP Over RA Serial DF1 Links

State Non-existent Fragmenting Waiting Assembling

Event

PCCC Response
Arrived with
FNC=ACK

Stay in Non-existent If Room Left fits in
one PCCC message,
send the Last
message using
Handle from the
ACK and go to
Waiting.
Otherwise, update
Buffer Pointer and
Room Left, copy
what fits into a
Middle message
using Handle from
the ACK, send it,
and stay in
Fragmenting.

(Assume the Receiver is confused.) Send an
Abort (with the Handle provided in the ACK)
to the Receiver. Free memory previously
allocated. Return a CIP “unable to deliver”
error. Go to Non-existent.

PCCC Response
Arrived with
FNC=NAK

Stay in Non-existent Free memory previously allocated. Return a CIP “unable to deliver”
error. Go to Non-existent.

PCCC Response
Arrived with
FNC=Only

Stay in Non-existent (Assume the
Receiver is
confused.) Send an
Abort (with the
Handle provided in
the response) to the
Receiver. Free
memory previously
allocated. Return a
CIP “unable to
deliver” error. Go to
Non-existent.

Copy the response
data into the CIP
response. Send the
CIP response. Go to
Non-existent.

(Assume the
Receiver is
confused.) Send an
Abort (with the
Handle provided in
the response) to the
Receiver. Free
memory previously
allocated. Return a
CIP “unable to
deliver” error. Go to
Non-existent.

PCCC Response
Arrived with
FNC=First_Resp

Stay in Non-existent (Assume the
Receiver is
confused.) Send an
Abort (with the
Handle provided in
the response) to the
Receiver. Free
memory previously
allocated. Return a
CIP “unable to
deliver” error. Go to
Non-existent.

Allocate a buffer to
handle the maximum
CIP response,
initialize Buffer
Pointer, Room Left,
and Handle, copy the
PCCC response data
into the CIP
response. Generate
and send a
Send_More message
with the Handle. Go
to Assembling.

(Assume the
Receiver is
confused.) Send an
Abort (with the
Handle provided in
the response) to the
Receiver. Free
memory previously
allocated. Return a
CIP “unable to
deliver” error. Go to
Non-existent.

RA Technologies Copyright©2006 Rockwell Automation page 24 of 52

Delivery of CIP Over RA Serial DF1 Links

State Non-existent Fragmenting Waiting Assembling

Event

PCCC Response
Arrived with
FNC=Middle

Stay in Non-existent (Assume the Receiver is confused.) Send an
Abort (with the Handle provided in the
response) to the Receiver. Free memory
previously allocated. Return a CIP “unable to
deliver” error. Go to Non-existent.

If size of data is less
than Room Left, (or
if the additional
memory can be
dynamically
allocated)
then:
Copy data to buffer
at Buffer Pointer,
update Buffer
Pointer and Room
Left, send a
Send_More message
with the Handle from
the Middle, stay in
Assembling.
else:
Free memory
previously allocated,
[send an Abort?]
return a CIP “unable
to deliver” error, go
to Non-existent

PCCC Response
Arrived with
FNC=Last

Stay in Non-existent (Assume the Receiver is confused.) Send an
Abort (with the Handle provided in the
response) to the Receiver. Free memory
previously allocated. Return a CIP “unable to
deliver” error. Go to Non-existent.

If size of data is less
than Room Left,
then:
Copy data to buffer
at Buffer Pointer,
deliver the CIP
response, and go to
Non-existent.
else:
Free memory
previously allocated,
[send an Abort?]
return a CIP “unable
to deliver” error, go
to Non-existent

PCCC Response
Arrived with
FNC=Illegal value

Stay in Non-existent (Assume the Receiver is confused.) (Do not send an Abort, since we
don’t even know if there is a handle with this illegal valued message.)
Free memory previously allocated. Return a CIP “unable to deliver”
error. Go to Non-existent.

1. The Sender is permitted (but not required) to send an Abort if it has a Handle for the transaction. This will help
the Receiver to free up resources more quickly.

RA Technologies Copyright©2006 Rockwell Automation page 25 of 52

Delivery of CIP Over RA Serial DF1 Links

Unconnected Receiver

An instance of the Receiver State Machine starts up when it receives the first fragment of a CIP
message via PCCC and ceases to exist with the delivery of the last fragment of the CIP response.
It assigns and uses the Handle in the messages (after the first one) to match the Sender’s request
with the appropriate instance of one of the Receiver state machines. The following state
transition diagram (STD) is intended to be informative in understanding the SEM; the SEM is the
specification. The STD only shows the “normal” events.

Figure 8 State Transition Diagram -Unconnected Receiver

Assembling

"Only"
message
received

Non-existent

Waiting

Fragmenting

"First_Req"
message received

"Middle "
message
received"Last"

message
received

"Only"
messag
sent

"First_Resp"
message

t

"Middle "
message
sent

"Last"
message
sent

The following events can happen.

• Reset Event

• Timeout Event

This is a “long” timer, used to free up resources, which the Sender evidently has
ceased to want to use. It should be 3 minutes for DF1/RS232 links.

• CIP Response Arrived Event

• PCCC Request Arrived Event, FNC= Only

• PCCC Request Arrived Event, FNC= First_Req

• PCCC Request Arrived Event, FNC= Middle

• PCCC Request Arrived Event, FNC= Last

• PCCC Request Arrived Event, FNC= Send_More

RA Technologies Copyright©2006 Rockwell Automation page 26 of 52

Delivery of CIP Over RA Serial DF1 Links

• PCCC Request Arrived Event, FNC= Abort

• PCCC Request Arrived Event, FNC= Illegal command

The following internal storage is assumed:

• Buffer Pointer

• Room Left

Table 10 State Event Matrix - Unconnected Receiver

State

Event

Non-existent Assembling Waiting Fragmenting

Reset or Timeout Stay in Non-
existent

Free memory previously allocated. Go to Non-existent. Stop Timer.

CIP Response
Arrived

Each CIP message should have its
own state machine. If a CIP
message “associated” with this SM
is received, drop it and stay in the
same state.

If the CIP
message fits in
one PCCC
message, send
the Only
message, free up
any resources,
and go to Non-
existent. Stop
Timer.
Otherwise,
initialize Buffer
Pointer and
Room Left, copy
what fits into a
First_Resp
message, send it,
and go to
Fragmenting.
Start Timer. See
Note.

Each CIP
message should
start up its own
state machine. If
a CIP message
“associated” with
this SM is
received, drop it
and stay in the
same state.

PCCC Request
Arrived with
FNC=Only

Allocate
resources
needed; assign a
Handle to
identify the
resources. Copy
the data into the
CIP request.
Send the CIP
request. Go to
Waiting.

Not applicable. Since there is no handle in the Only request, it cannot
specify an existing transaction. Therefore, the only thing that can be
done is to create a new instance as described in the text for the Non-
existent state.

RA Technologies Copyright©2006 Rockwell Automation page 27 of 52

Delivery of CIP Over RA Serial DF1 Links

State Non-existent Assembling Waiting Fragmenting

Event

PCCC Request
Arrived with
FNC=First_Req

Allocate
resources
needed to handle
the size
specified, assign
a Handle to
identify the
resources. Copy
the data into the
CIP request
buffer.
Initialize the
Buffer Pointer
and Room Left.
Send an ACK
with the Handle
assigned. Go to
Assembling.
Start Timer

Not applicable. Since there is no handle in the First_Req request, it
cannot specify an existing transaction. Therefore, the only thing that
can be done is to create a new instance as described in the text for the
Non-existent state.

PCCC Request
Arrived with
FNC=Middle

(Assume the
Sender is
confused.)
Return a PCCC
response of
NAK (sequence
error). Stay in
Non-existent

If size of data is
less than Room
Left, then:
Copy data to
buffer at Buffer
Pointer, update
Buffer Pointer
and Room Left,
send an ACK
message with the
Handle, stay in
Assembling.
Else:
Free memory
allocated, return
a PCCC response
of NAK (no
memory), go to
Non-existent.
Stop Timer.

(Assume the Sender is confused.) Free
memory previously allocated. Return a
PCCC response of NAK (sequence error).
Go to Non-existent. Stop Timer.

RA Technologies Copyright©2006 Rockwell Automation page 28 of 52

Delivery of CIP Over RA Serial DF1 Links

State Non-existent Assembling Waiting Fragmenting

Event

PCCC Request
Arrived with
FNC=Last

(Assume the
Sender is
confused.)
Return a PCCC
response of
NAK (sequence
error). Stay in
Non-existent

If size of data is
less than Room
Left, then:
Copy data to
buffer at Buffer
Pointer, deliver
the CIP request,
and go to
Waiting.
Else:
Free memory
allocated, return
a PCCC response
of NAK (no
memory), go to
Non-existent.
Stop Timer.

(Assume the Sender is confused.) Free
memory previously allocated. Return a
PCCC response of NAK (sequence error).
Go to Non-existent. Stop Timer.

PCCC Request
Arrived with
FNC=Send_More

(Assume the
Sender is
confused.)
Return a PCCC
response of
NAK (sequence
error). Stay in
Non-existent

(Assume the Sender is confused.)
Free memory previously allocated.
Return a PCCC response of NAK
(sequence error). Go to Non-
existent. Stop Timer (when done)

If Room Left fits
in one PCCC
message, send
the Last message
using Handle and
go to Non-
existent. Stop
Timer.
Otherwise,
update Buffer
Pointer and
Room Left, copy
what fits into a
Middle message
using Handle,
send it, and stay
in Fragmenting.

PCCC Request
Arrived with
FNC=Abort

Free memory previously allocated, if any. Return a PCCC ACK response. Go to (or stay in)
Non-existent.

PCCC Request
Arrived with
FNC=
Illegal value

Return a PCCC response of NAK (unrecognized command value). It is not possible to
reliably determine which handle is associated with this request, therefore, do not change the
state of anything.

1. In the case where the message request is being forwarded to another device via the Connection Manager, it is
required for the local Connection Manager to generate an "CIP Response" when it does not receive a reply to its
forwarded request. So in no case should a device NOT exit the Waiting state.

RA Technologies Copyright©2006 Rockwell Automation page 29 of 52

Delivery of CIP Over RA Serial DF1 Links

Connected Sender

The Sender state machine comes into existence when a connection is opened. It uses the TNSW
to match a response from the Receiver with this Sender. The following state transition diagram
(STD) is intended to be informative in understanding the SEM; the SEM is the specification. The
STD only shows the “normal” events.

Figure 9 State Transition Diagram - Connected Fragmentation Sender

Idle

Fragmenting

Assembling

Waiting

"Only"

First_Resp
received

"First_Req"
sent

"Last"

Nonexistent

Connection
opened

Connection

Closed

"Middle"
received

"Middle"
sent

"Last"

"Only"

"NAK" received

ASA Request

Any State

Any State

Any State

The states for this SM are:

• Non-existent

• Idle

• Fragmenting

• Waiting

• Assembling

RA Technologies Copyright©2006 Rockwell Automation page 30 of 52

Delivery of CIP Over RA Serial DF1 Links

The following events can happen:

• Reset Event

• Connection Closed Event

• PCCC Timeout Event

• CIP Request Arrived Event

• PCCC Response Arrived Event, FNC= ACK

• PCCC Response Arrived Event, FNC= NAK

• PCCC Response Arrived Event, FNC= Only

• PCCC Response Arrived Event, FNC= First_Resp

• PCCC Response Arrived Event, FNC= Middle

• PCCC Response Arrived Event, FNC= Last

• PCCC Response Arrived Event, FNC= Illegal command

NOTE: All “PCCC Response Arrived Events” assume matching TNSW. A PCCC response with
an unexpected TNSW should be dropped with no change in state.

The following internal storage is assumed:

• Buffer Pointer

• Room Left

• TNSW this is incremented for each distinct PCCC message. (Link layer
retries will reuse the same TNSW.)

Note: CIP Connections do not return an “unable to deliver” status, they just let the return path
time out.

Note: At Connection Establishment time, the memory is allocated according to the parameters in
the Forward_Open request. This memory is deallocated when the connection is closed.

Note: To make this table easier to understand, the “Non-Existent” state is not shown. It
transitions to the “Idle” state when the connection is open, and back to the Non-Existent state
from any other state when the connection is closed.

RA Technologies Copyright©2006 Rockwell Automation page 31 of 52

Delivery of CIP Over RA Serial DF1 Links

Table 11 State Event Matrix - Connected Sender

State

Event

Idle Waiting Fragmenting Assembling

Reset or
Connection
Closed

Go to Non-Existent.

PCCC Timeout Stay in Idle. (Assume Receiver is temporarily disconnected or busy) Go to Idle.

CIP Request
Arrived

Increment
TNSW. If the
CIP message fits
in one PCCC
message, send
the Only
message and go
to Waiting.
Otherwise,
initialize Buffer
Pointer and
Room Left, copy
what fits into a
First_Req
message, send it,
and go to
Fragmenting.

(Assume Client got tired of waiting.)
Increment TNSW. If the CIP message fits in one PCCC message,
send the Only message and go to (or stay in) Waiting.
Otherwise, initialize Buffer Pointer and Room Left, copy what fits
into a First_Req message, send it, and go to (or stay in) Fragmenting.

PCCC Response
Arrived with
FNC=ACK

Stay in Idle. (Assume the
Receiver is
confused.) Go to
Idle.

Increment
TNSW. If Room
Left fits in one
PCCC message,
send the Last
message using
Handle from the
ACK and go to
Waiting.
Otherwise,
update Buffer
Pointer and
Room Left, copy
what fits into a
Middle message
using Handle
from the ACK,
send it, and stay
in Fragmenting.

(Assume the
Receiver is
confused.) Go to
Idle.

PCCC Response
Arrived with
FNC=NAK

Stay in (or go to) Idle.

RA Technologies Copyright©2006 Rockwell Automation page 32 of 52

Delivery of CIP Over RA Serial DF1 Links

State Idle Waiting Fragmenting Assembling

Event

PCCC Response
Arrived with
FNC=Only

Stay in Idle. Copy the
response data
into the CIP
response. Send
the CIP response.
Go to Idle.

(Assume the
Receiver was
confused, but is
now in the Idle
state.) Go to
Idle.

(Assume the
Receiver was
confused, but is
now in the Idle
state.) Go to
Idle.

PCCC Response
Arrived with
FNC=First_Resp

Stay in Idle. Initialize Buffer
Pointer to start,
Room Left to
connection size,
and save Handle.
Increment
TNSW. If size
of data is less
than Room Left,
then:
Copy data to
buffer at Buffer
Pointer, update
Buffer Pointer
and Room Left,
send a
Send_More
message with the
Handle, go to
Assembling.
Else:
Drop the
response, go to
idle.

(Assume the
Receiver is
confused.)
Sender’s next
First_Req or
Only will
resynchronize
the Receiver. Go
to Idle.

(Assume the
Receiver is
confused.)
Sender’s next
First_Req or
Only will
resynchronize
the Receiver. Go
to Idle.

RA Technologies Copyright©2006 Rockwell Automation page 33 of 52

Delivery of CIP Over RA Serial DF1 Links

State Idle Waiting Fragmenting Assembling

Event

PCCC Response
Arrived with
FNC=Middle

Stay in Idle. (Assume the
Receiver is
confused.)
Sender’s next
First_Req or
Only will
resynchronize
the Receiver. Go
to Idle.

(Assume the
Receiver is
confused.)
Sender’s next
First_Req or
Only will
resynchronize
the Receiver. Go
to Idle.

Increment
TNSW. If size
of data is less
than Room Left,
then:
Copy data to
buffer at Buffer
Pointer, update
Buffer Pointer
and Room Left,
send a
Send_More
message with the
Handle from the
Middle, stay in
Assembling.
Else:
Drop the
Response. Go to
Idle.

PCCC Response
Arrived with
FNC=Last

Stay in Idle. (Assume the
Receiver was
confused, but is
now in the Idle
state.) Go to
Idle.

(Assume the
Receiver was
confused, but is
now in the Idle
state.) Go to
Idle.

If size of data is
less than Room
Left, then:
Copy data to
buffer at Buffer
Pointer, deliver
the CIP response,
and go to Idle.
else:
Go to Idle

PCCC Response
Arrived with
FNC=Illegal
value

Stay in Idle. (Assume the Receiver is very confused.) (Do not send an
Abort, since we don’t even know if there is a handle with
this illegal valued message.)
Go to Idle.

There are several occasions where the Sender sends an Abort to get the Receiver unconfused.
This is not really necessary, since the next CIP Request will get it unstuck, but it is a courtesy that
will allow it to return to normal quicker. It is not necessary to wait for the ACK, since ACKs
received in the Idle state are ignored. Also, if a new request goes out before the ACK is received,
this sender will no longer be expecting the TNSW of the Abort and it will be dropped.

RA Technologies Copyright©2006 Rockwell Automation page 34 of 52

Delivery of CIP Over RA Serial DF1 Links

Connected Receiver

An instance of the Receiver State Machine starts up when a connection is opened and ceases to
exist when the connection is closed. It assigns and uses the Handle in the messages (after the first
one) to match the Sender’s request with the appropriate instance of one of the Receiver state
machines. The following state transition diagram (STD) is intended to be informative in
understanding the SEM; the SEM is the specification. The STD only shows the “normal” events.

Figure 10 State Transition Diagram - Connected Fragmentation Receiver

Nonexistent

Assembling Fragmenting

Idle

Connection
Opened

Connection
Closed

"First_Resp"

"Last" received

"Middle"
received

"Middle"
sent

"Only"
received

"First_Req"

"Last" sent

Any State

The states for this SM are:

• Non-existent

• Idle

• Fragmenting

• Assembling

The following events can happen.

• Reset Event

• Connection Closure Event

RA Technologies Copyright©2006 Rockwell Automation page 35 of 52

Delivery of CIP Over RA Serial DF1 Links

• CIP Response Arrived Event

• PCCC Request Arrived Event, FNC= Only

• PCCC Request Arrived Event, FNC= First_Req

• PCCC Request Arrived Event, FNC= Middle

• PCCC Request Arrived Event, FNC= Last

• PCCC Request Arrived Event, FNC= Send_More

• PCCC Request Arrived Event, FNC= Abort

• PCCC Request Arrived Event, FNC= Illegal command

The following internal storage is assumed:

• Buffer Pointer

• Room Left

• TNSW This is the most recently received TNSW in a request. Note that this
state machine might deliver multiple responses with the same TNSW under
some conditions (E.g., multiple CIP responses received)

Table 12 State Event Matrix - Connected Receiver

State

Event

Idle Assembling Fragmenting

Reset or Connection
closure

Go to Non-existent.

CIP Response Arrived If the CIP message
fits in one PCCC
message, send the
Only message, stay in
Idle.
Otherwise, initialize
Buffer Pointer and
Room Left, copy what
fits into a First_Resp
message, send it, and
go to Fragmenting.

The sender is not
waiting for a
response, so drop it
and stay in the same
state.

The sender is not
waiting for a
response, so drop it
and stay in the same
state.

PCCC Request
Arrived with
FNC=Only

Assign a Handle to
identify the resources.
Copy the data into the
CIP request. Send the
CIP request. Stay in
Idle.

(Assume the sender quit the old message and wants to
start a new sequence.) Assign a Handle to identify the
resources. Copy the data into the CIP request. Send the
CIP request. Go to Idle.

RA Technologies Copyright©2006 Rockwell Automation page 36 of 52

Delivery of CIP Over RA Serial DF1 Links

State Idle Assembling Fragmenting

Event

PCCC Request
Arrived with
FNC=First_Req

Check that the
resources allocated to
the connection are
sufficient for the size
specified, assign a
Handle to identify the
resources; if they are
not, send a NAK (Not
Enough Memory) and
stay in idle. Copy the
data into the CIP
request buffer.
Initialize the Buffer
Pointer and Room
Left. Send an ACK
with the Handle
assigned. Go to
Assembling.

(Assume the sender quit the old message and wants to
start a new sequence.) Check that the resources allocated
to the connection are sufficient for the size specified,
assign a Handle to identify the resources; if they are not,
send a NAK (Not Enough Memory) and go to idle. Copy
the data into the CIP request buffer. Initialize the Buffer
Pointer and Room Left. Send an ACK with the Handle
assigned. Go to Assembling.

PCCC Request
Arrived with
FNC=Middle

(Assume the Sender is
confused.) Return a
PCCC response of
NAK (Unknown
Handle). Stay in Idle.

If size of data is less
than Room Left, then:
Copy data to buffer at
Buffer Pointer, update
Buffer Pointer and
Room Left, send an
ACK message with
the Handle, stay in
Assembling.
Else:
Return a PCCC
response of NAK (Not
Enough Memory), go
to Idle.

(Assume the Sender is
confused.) Return a
PCCC response of
NAK (sequence
error). Go to Idle.

PCCC Request
Arrived with
FNC=Last

(Assume the Sender is
confused.) Return a
PCCC response of
NAK (Unknown
Handle). Stay in Idle.

If size of data is less
than Room Left, then:
Copy data to buffer at
Buffer Pointer, deliver
the CIP request, and
go to Idle.
Else:
Return a PCCC
response of NAK (Not
Enough Memory), go
to Idle.

(Assume the Sender is
confused.) Return a
PCCC response of
NAK (sequence
error). Go to Idle.

RA Technologies Copyright©2006 Rockwell Automation page 37 of 52

Delivery of CIP Over RA Serial DF1 Links

State Idle Assembling Fragmenting

Event

PCCC Request
Arrived with
FNC=Send_More

(Assume the Sender is
confused.) Return a
PCCC response of
NAK (Unknown
Handle). Stay in Idle.

(Assume the Sender is
confused.) Return a
PCCC response of
NAK (sequence
error). Go to Idle.

If Room Left fits in
one PCCC message,
send the Last message
using Handle and go
to Idle.
Otherwise, update
Buffer Pointer and
Room Left, copy what
fits into a Middle
message using
Handle, send it, and
stay in Fragmenting.

PCCC Request
Arrived with
FNC=Abort

Return a PCCC ACK response. Go to (or stay in) Idle.

PCCC Request
Arrived with FNC=
Illegal value

Return a PCCC response of NAK (unrecognized command value). It is not possible to
reliably determine which connection or handle is associated with this request, therefore,
do not change the state of anything.

RA Technologies Copyright©2006 Rockwell Automation page 38 of 52

Delivery of CIP Over RA Serial DF1 Links

Example: Time Sequence Diagrams

In the following diagrams the arrow pointing to the right indicates a message going from the
Sender to the Receiver. The arrow pointing to the left indicates a message going from the
Receiver to the Sender. Note the strict alternation of Sender and Receiver messages. Only the
PCCC messages are shown; the link layer ACKs are not shown.

Table 13 Short Request, Short Response

Sender Function Receiver Extra

 Only 0

(Wait for application response.)

 Only 0

Table 14 Two Fragment Request, Short Response

Sender Function Receiver Extra

 First Size

 ACK Handle A, picked by Receiver

 Last Handle A

(Wait for application response.)

 Only 0

Table 15 Three Fragment Request, Short Response

Sender Function Receiver Extra

First Size

ACK Handle A, picked by Receiver

Middle Handle A

ACK Handle A

Last Handle A

(Wait for application response.)

Only 0

RA Technologies Copyright©2006 Rockwell Automation page 39 of 52

Delivery of CIP Over RA Serial DF1 Links

Table 16 Long Request, Short Response

Sender Function Receiver Extra

First Size

ACK Handle A, picked by Receiver

Middle Handle A

ACK Handle A

Middle Handle A

ACK Handle A

…

Last Handle A

(Wait for application response.)

Only 0

Table 17 Short Request, Two Fragment Response

Sender Function Receiver Extra

Only 0

(Wait for application response.)

First_Resp Handle A, picked by Receiver

Send_More Handle A

Last Handle A

RA Technologies Copyright©2006 Rockwell Automation page 40 of 52

Delivery of CIP Over RA Serial DF1 Links

Table 18 Two Fragment Request, Two Fragment Response

Sender Function Receiver Extra

First_Req Size

ACK Handle_A, picked by Receiver

Last Handle_A

(Wait for application response.)

First_Resp Handle_A

Send_More Handle_A

Last Handle_A

Table 19 Two Fragment Request, Long Response

Sender Function Receiver Extra

First_Req Size

ACK Handle_A, picked by Receiver

Last Handle_A

(Wait for application response.)

First_Resp Handle_A

Send_More Handle_A

Middle Handle_A

Send_More Handle_A

Middle Handle_A

...

Send_More Handle_A

Last Handle_A

RA Technologies Copyright©2006 Rockwell Automation page 41 of 52

Delivery of CIP Over RA Serial DF1 Links

Example: Byte Patterns

These are examples of PCCC messages that show the byte ordering intended by the above
specifications. The “Connected” examples assume a Class 3 Transport connection to the
Message Router. These examples all start with the first byte specified by the PCCC specification,
that is, CMD. The lines that are bold are those controlled by this specification; other lines are
controlled by other specifications.

Unconnected, Short

The unconnected CIP message and response can each be up to 242 bytes, starting with the “CIP
Service”, before fragmentation is needed.

Table 20 Unconnected Short Request

Byte Value (in Hex)

CMD 0B (PCCC request: CIP Unconnected)

STS 00

TNSW-1 1

TNSW-2 00

FNC 0 (Only)

Extra (unused) 0

CIP Service 01 (Get Attributes All, Request)

Size of IOI 02

IOI, first byte 20 (Class)

.... (rest of CIP message)

RA Technologies Copyright©2006 Rockwell Automation page 42 of 52

Delivery of CIP Over RA Serial DF1 Links

Table 21 Unconnected Short Response

Byte Value (in Hex)

CMD 4B (PCCC response: CIP Unconnected)

STS 00

TNSW-1 1

TNSW-2 00

FNC 0 (Only)

Extra (unused) 0

CIP Service 81 (Get Attributes All, Response)

Unused 00

CIP General Status 00

Size of CIP Extended Status 00

.... (rest of CIP response)

RA Technologies Copyright©2006 Rockwell Automation page 43 of 52

Delivery of CIP Over RA Serial DF1 Links

Connected, Short

The Connected CIP message and response can each be up to 238 bytes, starting with the “CIP
Service”, before fragmentation is needed.

Table 22 Connected Short Request

Byte Value (in Hex)

CMD 0A (PCCC Request: CIP Connected)

STS 00

TNSW-1 2

TNSW-2 00

FNC 0 (Only)

Extra (unused) 0

Connection ID, Low byte 14

Connection ID, High byte 27

Transport Header, Low byte 56

Transport Header, High byte 12

CIP Service 01 (Get Attributes All, Request)

Size of IOI 02

IOI, first byte 20 (Class)

.... (rest of CIP message)

RA Technologies Copyright©2006 Rockwell Automation page 44 of 52

Delivery of CIP Over RA Serial DF1 Links

Table 23 Connected Short Response

Byte Value (in Hex)

CMD 4A (PCCC Response: CIP Connected)

STS 00

TNSW-1 2

TNSW-2 00

FNC 0 (Only)

Extra (unused) 0

Connection ID, Low byte 14

Connection ID, High byte 27

Transport Header, Low byte 56

Transport Header, High byte 12

CIP Service 81 (Get Attributes All, Response)

Unused 00

CIP General Status 00

Size of CIP Extended Status 00

.... (rest of CIP response)

RA Technologies Copyright©2006 Rockwell Automation page 45 of 52

Delivery of CIP Over RA Serial DF1 Links

Unconnected, Long

This shows the bytes for a “Two Fragment Request, Two Fragment Response” when sending an
unconnected CIP Message. The extension to 3 or more fragments in either direction ought to be
obvious. Note that the CIP Service, IOI, etc. are only sent once in each direction.

Table 24 Unconnected “First” Request

Byte Value (in Hex)

CMD 0B (PCCC Request: CIP Unconnected)

STS 00

TNSW-1 3

TNSW-2 00

FNC 01 (First_Req)

Extra (Size) 01 (meaning “Allocate 512 bytes”)

CIP Service 01 (Get Attributes All, Request)

Size of IOI 02

IOI, first byte 20 (Class)

.... (part of CIP message)

Table 25 Unconnected Response

Byte Value (in Hex)

CMD 4B (PCCC Response: CIP Unconnected)

STS 00

TNSW-1 3

TNSW-2 00

FNC 7 (ACK)

Extra (Handle) 7

RA Technologies Copyright©2006 Rockwell Automation page 46 of 52

Delivery of CIP Over RA Serial DF1 Links

Table 26 Unconnected “Last” Request

Byte Value (in Hex)

CMD 0B (PCCC Request: CIP Unconnected)

STS 00

TNSW-1 4

TNSW-2 00

FNC 3 (Last)

Extra (Handle) 7

.... (rest of CIP message)

Table 27 Unconnected “First” Response

Byte Value (in Hex)

CMD 4B (PCCC Response: CIP Unconnected)

STS 00

TNSW-1 4

TNSW-2 00

FNC 4 (First_Resp)

Extra (Response Handle) 7

CIP Service 81 (Get Attributes All, Response)

Unused 00

CIP General Status 00

Size of CIP Extended Status 00

.... (part of CIP response)

RA Technologies Copyright©2006 Rockwell Automation page 47 of 52

Delivery of CIP Over RA Serial DF1 Links

Table 28 Unconnected Request for Another Fragment

Byte Value (in Hex)

CMD 0B (PCCC Request: CIP Unconnected)

STS 00

TNSW-1 5

TNSW-2 00

FNC 5 (Send_More)

Extra (Response Handle) 7

Table 29 Unconnected “Last” Response

Byte Value (in Hex)

CMD 4B (PCCC Response: CIP Unconnected)

STS 00

TNSW-1 5

TNSW-2 00

FNC 3 (Last)

Extra (Response Handle) 7

.... (Rest of CIP response)

RA Technologies Copyright©2006 Rockwell Automation page 48 of 52

Delivery of CIP Over RA Serial DF1 Links

Connected, Long

This shows the bytes for a “Two Fragment Request, Two Fragment Response” when sending a
connected CIP Message. The extension to 3 or more fragments in either direction ought to be
obvious. Note that the Connection ID, Transport header, CIP Service, IOI, etc., are only sent
once in each direction.

Table 30 Connected “First” Request

Byte Value (in Hex)

CMD 0A (PCCC Request: CIP Connected)

STS 00

TNSW-1 6

TNSW-2 00

FNC 1 (First_Req)

Extra (Size) 1 (meaning “Allocate 512 bytes”)

Connection ID, Low byte 14

Connection ID, High byte 27

Transport Header, Low byte 57

Transport Header, High byte 12

CIP Service 01 (Get Attributes All, Request)

Size of IOI 02

IOI, first byte 20 (Class)

.... (part of CIP message)

RA Technologies Copyright©2006 Rockwell Automation page 49 of 52

Delivery of CIP Over RA Serial DF1 Links

Table 31 Connected Response

Byte Value (in Hex)

CMD 4A (PCCC Response: CIP Connected)

STS 00

TNSW-1 6

TNSW-2 00

FNC 7 (ACK)

Extra (Handle) 16

Table 32 Connected “Last” Request

Byte Value (in Hex)

CMD 0A (PCCC Request: CIP Connected)

STS 00

TNSW-1 7

TNSW-2 00

FNC 3 (Last)

Extra (Handle) 16

.... (rest of CIP message)

RA Technologies Copyright©2006 Rockwell Automation page 50 of 52

Delivery of CIP Over RA Serial DF1 Links

Table 33 Connected “First” Response

Byte Value (in Hex)

CMD 4A (PCCC Response: CIP Connected)

STS 00

TNSW-1 7

TNSW-2 00

FNC 4 (First_Resp)

Extra (Handle) 16

Connection ID, Low byte 14

Connection ID, High byte 27

Transport Header, Low byte 57

Transport Header, High byte 12

CIP Service 81 (Get Attributes All, Response)

Unused 00

CIP General Status 00

Size of CIP Extended Status 00

.... (Part of CIP response)

Table 34 Connected Request for Another Fragment

Byte Value (in Hex)

CMD 0A (PCCC Request: CIP Connected)

STS 00

TNSW-1 8

TNSW-2 00

FNC 05 (Send_More)

Extra (Response Handle) 16

RA Technologies Copyright©2006 Rockwell Automation page 51 of 52

Delivery of CIP Over RA Serial DF1 Links

Table 35 Connected “Last” Response

Byte Value (in Hex)

CMD 4A (PCCC Response: CIP Connected)

STS 00

TNSW-1 8

TNSW-2 00

FNC 3 (Last)

Extra (Response Handle) 16

.... (Rest of CIP response)

RA Technologies Copyright©2006 Rockwell Automation page 52 of 52

	Purpose
	Appendices
	CIP Communication Architecture
	Messaging
	Transport
	Routing

	 Delivery of CIP in PCCC
	 PCCC as an UnConnected Messaging Manager (UCMM)
	 PCCC as Network Connection Pair
	Keeping a Connection Alive

	
	Terms
	Overview
	Application
	Functions
	ONLY Function
	FIRST_Req Function
	FIRST_Resp Function
	MIDDLE Function
	LAST Function
	Send More Function
	Abort Function
	ACK Function
	NAK Function
	Formal Model

	 Unconnected Sender
	 Unconnected Receiver
	Connected Sender
	 Connected Receiver
	 Example: Time Sequence Diagrams
	Unconnected, Short
	 Connected, Short
	 Unconnected, Long
	 Connected, Long

